Home
Class 12
MATHS
If a,b and c are unit coplanar vectors t...

If a,b and c are unit coplanar vectors then the scalar triple product `[(2a-b ,2b-c ,2c-a)]` is equal to

A

0

B

1

C

`-sqrt3`

D

`sqrt3`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca,vecb, vecc are unit coplanar vectors then the scalar triple product [2veca-vecb 2vecb-c vec2c-veca] is equal to (A) 0 (B) 1 (C) -sqrt(3) (D) sqrt(3)

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product [(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=

If vec a,vec b and vec c are unit coplanar vectors, then the scalar triple product [2vec a-vec b2vec b-vec c2vec c-vec a] is 0 b.1 c.-sqrt(3)d.sqrt(3)

If overset(to)(a) , overset(to)(b) " and " overset(to)( c) are unit coplanar vectors then the scalar triple product [2 overset(to)(a) - overset(to)(b) 2 overset(to)(b) - overset(to)(c ) 2 overset(to)(c ) - overset(to)(a)] is

If a, b and c are unit coplanar vectors, then [[2a-b, 2b-c, 2c-a]] is equal to