Home
Class 12
MATHS
Let barV = 2i + j - k and barW = i + 3k ...

Let `barV = 2i + j - k` and `barW = i + 3k`
If `barU` is a unit vector, then the max imum value of the scalar triple product `[barU barV barW]` is

A

`-1`

B

`sqrt10+sqrt6`

C

`sqrt59`

D

`sqrt60`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec V=2hat i+hat j-hat k and vec W=hat i+3hat k. If vec U is a unit vector,then the maximum value of the scalar triple product [UVW] is -1 b.sqrt(10)+sqrt(6) c.sqrt(59)d.sqrt(60)

Let v=2vec i+vec j-vec kw=vec i+3vec k and vec u is a unit vector then the maximum value of scalar triple product.

The value of scalar triple product i-2j+3k, 2i+j-k" and "j+k is

If overset(to)(V) = 2oveset(to)(i) + overset(to)(j) - overset(to)(k) " and " overset(to)(W) = overset(to)(i) + 3overset(to)(k) . if overset(to)(U) is a unit vectors then the maximum value of the scalar triple product [overset(to)(U) , overset(to)(v) , overset(to)(W)] is

Let vec b=2hat i+hat j-hat k,vec k=hat i+3hat k, If vec a is a unit vector then find the maximum value of [vec avec bvec cvec c]

" 37.If "a(hat i+hat j+hat k)" is a unit vector,then the value of "a" is "

Let : bara = i - j, barb = j - k, barc = k - i If bard is a unit vector such that bara. bard = 0 = [barb barc bard] , then : bard =