Home
Class 12
MATHS
If vec a , vec ba n d vec c are non-cop...

If ` vec a , vec ba n d vec c` are non-coplanar unit vectors such that ` vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2))` , then the angle between ` vec aa n d vec b` is `3pi//4` b. `pi//4` c. `pi//2` d. `pi`

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`(3pi)/(4)`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a,vec b and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)), then the angle between vec a and vec b is a.3 pi/4b. pi/4 c.pi/2d. pi

If vec a,vec b, and vec c are non-coplanar unit vectors such that vec a xx(vec b xxvec c)=(vec b+vec c)/(sqrt(2)),vec b and vec c are non parallel,then prove that the angel between vec a and vec b is 3 pi/4

If vec a and vec b are unequal unit vectors such that (vec a-vec b)xx[(vec b+vec a)xx(2vec a+vec b)]=vec a+vec b then angle theta between vec a and vec b is 0 b.pi/2 c.pi/4 d.pi

If vec a , vec b , vec c are three non coplanar vectors such that vec ddot vec a= vec ddot vec b= vec ddot vec c=0, then show that d is the null vector.

If vec a and vec b are two vectors,such that vec a*vec b<0 and |vec a*vec b|=|vec a xxvec b|, then the angle between vectors vec a and vec b is pi b.7 pi/4 c.pi/4d.3 pi/4

If vec a,vec c,vec d are non-coplanar vectors,then vec d*{vec a xx[vec b xx(vec c xxvec d)]} is equal to

Let vec a,vec b and vec c be there unit vectors such that vec a xx(vec b xxvec c)=(sqrt(3))/(2)(vec b+vec c)* If vec b is not parallel to vec c, then the angle between vec a and vec b is: (1)(3 pi)/(4) (2) (pi)/(2)(3)(2 pi)/(3) (4) (5 pi)/(6)

If vec a and vec b are unit vectors such that (vec a+vec b)*(2vec a+3vec b)xx(3vec a-2vec b)=0 ,then angle between vec a and vec b is 0 b.pi/2c. pi d.indeterminate

If vec a,vec b,vec c are three non coplanar vectors such that vec a.vec a*vec a=vec dvec b=vec d*vec c=0 then show that vec d is the null vector.

vec a , vec ba n d vec c are unit vectors such that | vec a+ vec b+3 vec c|=4. Angle between vec aa n d vec bi stheta_1, between vec ba n d vec c is theta_2 and between vec aa n d vec c varies [pi//6,2pi//3]dot Then the maximum of costheta_1+3costheta_2i s 3 b. 4 c. 2sqrt(2) d. 6