Home
Class 12
MATHS
Let a vector vec(a) be coplanar with vec...

Let a vector `vec(a)` be coplanar with vectors `vec(b) = 2hat(i) + hat(j) + hat(k)` and `vec(c) = hat(i) - hat(j) + hat(k)`. If `vec(a)` is perpendicular to `vec(d) = 3hat(i) + 2hat(j) + 6hat(k)`, and `|vec(a)| = sqrt(10)`. Then a possible value of `[[vec(a),vec(b),vec(c)]] + [[vec(a), vec(b), vec(d)]] + [[vec(a),vec(c),vec(d)]]` is equal to :

A

`-38`

B

`-29`

C

`-40`

D

`-42`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Let vec u be a vector coplanar with the vectors vec a=2hat i+3hat j-hat k and vec b=hat j+hat k If vec u is perpendicular to vec a and vec u.vec b=24 then |vec u|^(2) is equal to

If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2hat(k) and vec(c ) = hat(i) + m hat(j) + n hat(k) are three coplanar vectors and |vec(c )| = sqrt6 , then which one of the following is correct?

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals