Home
Class 12
MATHS
If A(x)=|(x^n,sinx,cosx),(n !,sin((npi)...

If `A(x)=|(x^n,sinx,cosx),(n !,sin((npi)/2),cos((npi)/2)),(a,a^2,a^3)|`, then the value of `d^n/(dx^n)[Delta(x)]` at `x=0` is

A

`-1`

B

0

C

1

D

Dependent of a

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If A(x)=det[[x^(n),sin x,cos xn!sin((n pi)/(2)),cos((n pi)/(2))a,a^(2),a^(3)]], then the value of (d^(n))/(dx^(n))[Delta(x)] at x=0 is

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

Let "f(x)"|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

If f(x)=det[[x^(n),n!,2cos x,cos((n pi)/(2)),4sin x,sin((n pi)/(2)),8]], then find the value of (d^(n))/(dx^(n))[f(x)]_(x=0)]|

if =|{:(x^(n),,n!,,2),(cos x,,"cos"(npi)/(2),,4),(sin x,,"sin" (npi)/(2),,8):}|, then find the value of (d^(n))/(dx^(n)) [f(x)]_(x=0) (n in z)

Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx,-cosx,0)| then int_(0)^(pi//2){Delta(x)+Delta'(x)]dx equals

The value of int_(0)^(2npi)[sin x cos x] dx is equal to