Home
Class 12
MATHS
If A=[(1,1),(0,1)], then A^(n)=...

If `A=[(1,1),(0,1)]`, then `A^(n)=`

A

`[(1,n),(0,1)]`

B

`[(n,n),(0,n)]`

C

`[(n,1),(0,n)]`

D

`[(1,1),(0,n)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

Let {:[(1,2),(0,1):}][{:(1,2),(0,1):}]......[{:(1,n-1),(0,1):}]=[{:(1,78),(0,1):}] If A=[{:(1,n),(0,1):}] then A^(-1)=

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

If A= [(1,0),(1,1)] then (A) A^-n=[(1,0),(-n,1)] , n epsilon N (B) lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)] (C) lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)] (D) none of these

If A=|[1,a],[0,1]| , then A^(n) is equal to

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

If A={:[(1,a),(0,1)]:}," then, for all "ninN," matrix "A^(n)=

If A=([1,0],[1,1]) then A^(n) =

If A=[[1,0],[1,1]] then A^(n) is equal to