Home
Class 12
MATHS
If A^(2)-A+I=0, then A^(-1)=...

If `A^(2)-A+I=0`, then `A^(-1)=`

A

`A^(-2)`

B

`A+I`

C

`I-A`

D

`A-I`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a square matrix satisfying the equation A^(2)-4A-5I=0 , then A^(-1)=

If A is a non-singular square matrix such that A^(2)-7A+5I=0, then A^(-1)

If A={:[(1+i,-i),(i,1+i)]:}," where "i=sqrt(-1)," and "A^(2)-2A+I=0," then ":A^(-1)=

If A^(2)-A+I=0 then find A^(-1) .In terms of A and I

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

If A is a square matrix and |A|!=0 and A^(2)-7A+I=0 ,then A^(-1) is equal to (I is identity matrix)

" If "A" is a square matrix and " |A|!=0" and "A^(2)-7A+I=0 " ,then "A^(-1)" Ais equal to (/ is identity matrix) "

If a matrix A is such that 4A^(3)+2A^(2)+7A+I=0 , then A^(-1) equals

If a matrix A is such that 3A^(3)+2A^(2)+5A+I=0, then A^(-1) is equal to