Home
Class 12
MATHS
|(1,a,b),(-a,1,c),(-b,-c,1)|=...

`|(1,a,b),(-a,1,c),(-b,-c,1)|`=

A

`1+a^(2)+b^(2)+c^(2)`

B

`1-a^(2)+b^(2)+c^(2)`

C

`1+a^(2)+b^(2)-c^(2)`

D

`1+a^(2)-b^(2)+c^(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0 , then sin^(2) A + sin^(2) B + sin^(2) C is

Without expanding, prove that each of the following determinant vanishes : |(1,a,b+c),(1,b,c+a),(1,c,a+b)|

det[[1,a,b-a,1,c-b,-c,1]]=1+a^(2)+b^(2)+c^(2)

Prove: |(1,a, b c),(1,b ,c a),(1,c ,a b)|=|(1,a ,a^2),( 1,b,b^2),( 1,c,c^2)|

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is