Home
Class 12
MATHS
Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,...

Let `f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]|` then find `lim_(t->0) f(t)/t^2.`

A

0

B

`-1`

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find f(0) for f(t)= 3t^2-10t+6 .

If x=2cost-cos2t,y=2sint-sin2t," then "(dy)/(dx)=

Let f(t)=sqrt(1-sin t), then int_(0)^(2 pi)f(t)*dt-int_(0)^( pi)f(t).dt, is equal to

If =f''(t)cos t+f'(t)sin t,y=-f''(t)sin t+f'(t)cos t, then int[((dx)/(dt))^(2)+((dy)/(dt))^(2)]^((1)/(2))dt is equal to

x=3cost-2cos^(3)t,y=3sint-2sin^(3)t

If x=2cost-cos2t , y=2sint-sin2t ,then at t=(pi)/(4) , (dy)/(dx)=

If x=a(2cost+cos2t),y=a(2sint+sin2t)," then "(dy)/(dx)=

Evaluate : lim_( t -> 0 ) tan ( 1 - sint/t )

lim_(t rarr0)[cot^(-1)(t^2/2)]