Home
Class 12
MATHS
The values of the determinant |(1,cos(al...

The values of the determinant `|(1,cos(alpha-beta),cosalpha),(cos(alpha-beta),1,cosbeta),(cosalpha,cosbeta,1)|` is

A

`alpha^(2)+beta^(2)`

B

`alpha^(2)-beta^(2)`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of x^2-px+q=0, then the value of |[1,cos(beta-alpha),cosalpha],[cos(alpha-beta),1,cosbeta],[cosalpha,cosbeta,1]| is

The value of the determinant ,cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]| is equal

The value of the determinant |{:(1,sin(alpha-beta)theta,cos (alpha-beta)theta),(a, sinalphatheta,cos alphatheta),(a^(2),sin(alpha-beta)theta,cos(alpha-beta)theta):}| is independent of

cos (alpha-beta) quad cos (alpha-beta), cos alpha1, cos betacos alpha, cos beta, 1] |

The maximum value of determinant |{:(cos(alpha+beta),sin alpha,-cos alpha),(-sin(alpha+beta),cos alpha, sin alpha),(cos 2beta,sin beta, cos beta):}| is ___________

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is