Home
Class 12
MATHS
The value of the determinant expansion |...

The value of the determinant expansion `|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)|` =

A

`abc(a+b+c)`

B

`3a^(2)b^(2)c^(2)`

C

0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

Prove that det[[b^(2)-ab,b-c,bc-acab-a^(2),a-b,b^(2)-abbc-ac,c-a,ab-a^(2)]]=0

Without expanding, show that the value of each of the determinants is zero: |[1,a, a^2-bc],[1,b,b^2-ac],[1,c,c^2-ab]|

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Without expanding the determinant, show that the determinant |{:(a^(2)+10,ab,ac),(ab,b^(2)+10,bc),(ac,bc,c^(2)+10):}| is divisible by 100

If a, b, c are real numbers, then find the intervals in which : f(x)=|(x+a^(2),ab,ac),(ab,x+b^(2),bc),(ac,bc,x+c^(2))| is strictly increasing or decreasing.