Home
Class 12
MATHS
Value of the D=|(1/a,bc,a^(3)),(1/b,ca,b...

Value of the `D=|(1/a,bc,a^(3)),(1/b,ca,b^(3)),(1/c,ab,c^(3))|` is

A

0

B

`(a-b)(b-c)(c-a)`

C

`a^(2)b^(2)c^(2)(a-b)(b-a)(c-a)`

D

none of the options

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of the determinant |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))| ?

The value of the determinant |{:(1,bc,a(b+c)),(1,ca,b(a+c)),(1, ab,c(a+b)):}| doesn't depend on

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

|[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]|=0

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..

If bc+ca+ab=18 and |(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3))|=lamda|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))| the value of lamda is

Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}|