Home
Class 12
MATHS
If x , y and z be greater than 1, then t...

If x , y and z be greater than 1, then the value of ` |{:(1, log_(x)y, log_(x) z),(log_(y)x , 1 ,log_(y)z),(log_(z)x , log_z y , 1 ):}|` =

A

`logx.logy.logz`

B

`logx+logy+logz`

C

0

D

`1-{(logx).(logy).(logz)}`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

det[[log_(x)xyz,log_(x)y,log_(x)zlog_(y)xyz,1,log_(y)zlog_(z)xyz,log_(z)y,1]]=0

For positive numbers x,y,s the numberical value of the determinant |{:(1,log_(x)y,log_(x)z),(log_(y)x,3,log_(y)z),(log_(z)x,log_(z)y,5):}| is

log_(x)x xx log_(y)y xx log_(z)z = ______

For positive numbers x,y and z, the numerical value of the determinant det[[log_(x)y,log_(x)zlog_(y)x,1,log_(y)zlog_(z)x,log_(z)y,1]]

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is