Home
Class 12
MATHS
|(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^...

`|(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =`

A

0

B

`12cos^(2)x-10sin^(2)x`

C

`12sin^(2)x-10cos^(2)x-2`

D

`10sin2x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

sin ^ (2) x, cos x ^ (2) x, 1cos ^ (2) x, sin ^ (2) x, 1-10,12,2] | = 0

If f(x)=det[[sin^(2)x,cos^(2)x,1cos^(2)x,sin^(2)x,1x-12,12,2]] then f'((pi)/(2))=

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

" If determinant "|[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]|" is expanded as a function of "sin^(2)x" ,then the absolute value of constant term in expansion of function "

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x