Home
Class 12
MATHS
If a, b, c are in A.P., then |{:(x+2,x+3...

If a, b, c are in A.P., then `|{:(x+2,x+3,x+a),(x+4, x+5, x+b),(x+6, x+7,x+c):}|` is

A

`x-(a+b+c)`

B

`9x^(2)+a+b+c`

C

`a+b+c`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Choose the correct answer in questions 17 to 19: If a, b, c are in A.P., then the determinant [{:(x+2,x+3,x+2a),(x+3,x+4,x+3b),(x+4,x+5,x+2c):}] is : (a) 0 (b) 1 ( c) x (d) 2x

Choose the correct answer from the following : If a, b, c are in arithmetic progression, then |{:(x+1,x+4,x+a),(x+2,x+5,x+b),(x+3,x+6,x+c):}|=

If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c]|=0

If a, b, c, are in A.P, then the determinant |x+2x+3x+2a x+3x+4x+2b x+4x+5x+2c| is (A) 0 (B) 1 (C) x (D) 2x

if a,b,c are in A.P. show that : | [ x+1, x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c ] |=0

If a,b,c, are in A.P, then the determinant,det[[x+2,x+3,x+2ax+3,x+4,x+2bx+4,x+5,x+2c]] is

If log_(a)x,log_(b)x,log_(c)x are in A.P then c^(2)=

If a, b, c are in A.P. and a, x, b, y, c are in G.P., then prove that b^(2) is the arithmatic mean of x^(2)" and "y^(2).

If a,b,c are in A.P., and x+2,x+7,ax+5,x+11,bx+8,x+15,c]| then Delta equals to