Home
Class 12
MATHS
Let Deltat=|(a1,b1,c1),(a2,b2,c2),(a3,b3...

Let `Delta_t=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|and Delta_2=|(alpha_1,beta_1,gamma_1),(alpha_2,beta_2,gamma_2),(alpha_3,beta_3,gamma_3)|,` then `Delta_1 xx Delta_2` can be expressed as the sum of how many determinants ?

A

9

B

3

C

27

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc^2,c^2+ra^2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

Let Delta_(t)=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]] and Delta_(2)=det[[alpha_(1),beta_(1),gamma_(1)alpha_(2),beta_(2),gamma_(2)alpha_(3),beta_(3),gamma_(3)]] how many determinants?

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|, then the value of Delta_1=|(a_1+2b_1+3c_1,2c_1+3c_1,c_1),(a_2+2b_2+3c_2,2b_2+3c_2,c_2),(a_3+2b_3+ 3c_3,2b_3+3c_3,c_3)| is equal to

|[1,alpha,alpha^3],[1,beta,beta^3],[1,gamma,gamma^3]|=(alpha-beta)(beta-gamma)(gamma-alpha)(alpha+ beta+gamma)

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

Show that |(1,alpha,alpha^3),(1,beta,beta^3),(1,gamma,gamma^3)|=(alpha-beta)(beta-gamma)(gamma-alpha)( alpha+beta+gamma)

Show that | (1,1,1), (alpha ^ 2, beta ^ 2, gamma ^ 2), (alpha ^ 3, beta ^ 3, gamma ^ 3) | = (alpha-beta) (beta-gamma) (gamma-alpha) (alphabeta + betagamma + gammaalpha) |

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...