Home
Class 12
MATHS
For all values of theta in(0,pi/2), the...

For all values of `theta in(0,pi/2),` the determinant of the matrix `[(-2,tantheta+sec^2theta,3),(-sintheta,costheta,sintheta),(-3,-4,3)]` always lies in the interval :

A

`[3, 5]`

B

(4, 6)

C

`((5)/(2),(19)/(4))`

D

`[(7)/(2),(21)/(4)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

For all values of theta in(0,(pi)/(2)), the determinant of the matrix [[-2,tan theta+sec^(2)theta,3-sin theta,cos theta,sin theta-3,-4,3]] always lies -3 the interval :

Consider a matrix A (theta)= [(sintheta,costheta),(-costheta,sintheta)] then

For -pi/2

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

Prove that : (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)-tantheta

For -(pi)/(2)lttheta(pi)/(2),(sintheta+sin2theta)/(1+costheta+cos2theta) lies in the interval

If tantheta=4/3 then find the value of (sintheta+costheta)/(sintheta-costheta)

Find all values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0

(i) If tantheta=(a)/(b) ,then find the value of (2sintheta-3costheta)/(2sintheta+3costheta)