Home
Class 12
MATHS
If M=[(1,2),(2,3)]andM^(2)-gammaM-I(2)=0...

If `M=[(1,2),(2,3)]andM^(2)-gammaM-I_(2)=0`, then `gamma=`

A

`-2`

B

2

C

`-4`

D

4

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

x^(3)+5x^(2)+px+q=0 and x^(3)+7x^(2)+px+r=0 have two roos in common. If their third roots are gamma_(1) and gamma_(2) , respectively, then |gamma_(1)-gamma_(2)|=

If S_(r)=alpha^(r)+beta^(r)+gamma^(r) then show that det[[S_(0),S_(1),S_(2)S_(1),S_(2),S_(3)S_(2),S_(3),S_(4)]]=(alpha-beta)^(2)(beta-gamma)^(2)(gamma-alpha)^(2)det[[S_(1),S_(2),S_(3)S_(2),S_(3),S_(4)]]=(alpha-beta)^(2)(beta-gamma)^(2)(gamma-alpha)^(2)

x^(3)+5x^(2)+px+q=0 and x^(3)+7x^(2)+px+r=0 have two roots in common.If their third roots are gamma_(1) and gamma_(2) respectively,then | gamma_(1)+gamma_(2)|=

If [(0,2beta,gamma),(alpha,beta,-gamma),(alpha,-beta,gamma)] is orthogonal, then find the value of 2alpha^(2)+6beta^(2)+3gamma^(2).

if a matrix M is given by [{:(0,1,2),(1,2,3),(3,1,1):}] and if M[{:(alpha),(beta),(gamma):}]=[{:(1),(2),(3):}] then

If A=[alpha beta gamma-alpha] is such that A^(2)=I, then 1+alpha^(2)+beta gamma=0( b) 1-alpha^(2)+beta gamma=0 (c) 1-alpha^(2)-beta gamma=0 (d) 1+alpha^(2)-beta gamma=0

Let A=([2,1,3],[1,1,2],[3,1,1]) and A^(-1)=alpha A^(2)+beta A+gamma I ,then which of the following holds good (A) alpha+beta=1 (B) 3(alpha+beta+gamma)=10(C) 8(beta+gamma)=11 (D) 8(alpha+gamma)=3]]