Home
Class 12
MATHS
For the matrix A=[1,1,0),(1,2,1),(2,1,0)...

For the matrix `A=[1,1,0),(1,2,1),(2,1,0)]` which of the following is correct? (A) `A^3+3A^2-I=0` (B) `A^3-3A^2-I=0` (C) `A^3+2A^2-I=0` (D) `A^3-+A^2-+I=0`

A

`A^(3)+3A^(2)-I=0`

B

`A^(3)-3A^(2)-I=0`

C

`A^(3)+2A^(2)-I=0`

D

`A^(3)-A^(2)+I=0`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A be a 3xx3 matrix satisfying A^3=0 , then which of the following statement(s) are true (a)|A^2+A+I|!=0 (b) |A^2-A+O|=0 (c)|A^2+A+I|=0 (d) |A^2-A+I|!=0

If A=((1,0,0),(0,2,1),(1,0,3)) then (A-I)(A-2I)(A-3I)=

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

Let A = [(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity matrix . Then 2A^(2) -A^(3) =

If A = [(-1,2),(3,1)],B=[(1,0),(-1,0)] then the value of 2A+B+2I=

If A=[[1,-1,2],[3,0,-2],[1,0,3]] then prove that A*(adjA)=|A|I Also,find A^(-1)

Which of the following statements are correct: (i) {phi}={0} (ii) {a,b,c}={b,a,c} (iii) {1,2,{3}}={{1},2.3}

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).