Home
Class 12
MATHS
If A=[[cosalpha, sinalpha], [-sinalpha, ...

If `A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]]`, then `A^(10)=`

A

`((cos10alpha,sin10alpha),(-sin10alpha,cos10alpha))`

B

`((cos10alpha,-sin10alpha),(sin10alpha,cos10alpha))`

C

`((cos10alpha,sin10alpha),(-sin10alpha,-cos10alpha))`

D

`((cos10alpha,-sin10alpha),(-sin10alpha,-cos10alpha))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[cosalpha, sinalpha], [-sinalpha, cosalpha]] and A(adjA)=[[k, 0], [0, k]] , then k=

If (i) A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] , then verify that AprimeA" "=" "I . (ii) A=[[sinalpha,cosalpha],[-cosalpha,sinalpha]] , then verify that AprimeA" "=" "I .

If A=[[cosalpha, sinalpha],[-sinalpha, cosalpha]] , prove by mathematicasl induction that, A^n=[[cosnalpha, sin nalpha],[-sin nalpha,cos nalpha]] for every natural number n

let alpha=pi/5 and A=[[cosalpha , sinalpha] , [-sinalpha , cosalpha]] and B=A+A^2+A^3+A^4 then: (A) B is singular (B) B is symmetric (C) B is skew symmetric (D) 0 lt |B| lt 1

If A_(alpha)=[(cosalpha,-sinalpha),(sinalpha,cosalpha)] , then

A = [ [ cosalpha , sinalpha ], [ sinalpha , cosalpha ] ] ,then find | A |

if A=[[cosalpha,sinalpha],[-sinalpha,cosalpha]] be such that A+A'=I then alpha

If A=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , then (adjA)^(-1)=