Home
Class 12
MATHS
If A=|{:(2,lambda,-3),(0,2,5),(1,1,3):}|...

If `A=|{:(2,lambda,-3),(0,2,5),(1,1,3):}|`. Then `A^(-1)` exist if

A

`lambda=2`

B

`lambdane2`

C

`lambdane-2`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [{:( 2 , lamda, - 3),( 0,2, 5),(1,1,3):}], then inverse of matrix A will exist if :

If A = ({:( 1,2,3),( 2,1,2),( 2,2,1) :}) and A^(2) -4A -5l =O where I and O are the unit matrix and the null matrix order 3 respectively if , 15A^(-1) =lambda |{:( -3,2,3),(2,-3,2),(2,2,-3):}| then the find the value of lambda

If A=[{:(2,-1),(3,4),(1,5):}]" and "B=[{:(-1,3),(2,1):}] , find AB. Does BA exist?

Assertion (A) : If the matrix A=[{:(1,3,lambda+2),(2,4,8),(3,5,10):}] is singular , then lambda=4 . Reason (R ) : If A is a singular matrix, then |A|=0

If A=[[2,a,-3] , [0,2,5] , [1,1,3]] then,find the value of a for which A^(-1) exists.

Let A be a 3 xx 3 matrix such that adj A = [{:(,2,-1,1),(,-1,0,2),(,1,-2,-1):}] and B =adj (adj A) . If |A| = lambda and |(B^(-1))^T| = mu then the ordered pair (|lambda|, mu) is equal to

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0