Home
Class 12
MATHS
The value of the determinant |(a+b,a+2b,...

The value of the determinant `|(a+b,a+2b,a+3b),(a+2b,a+3b,a+4b),(a+4b,a+5b,a+6b)|` is

A

`a^(2)+b^(2)+c^(2)-3abc`

B

`3ab`

C

`3a+5b`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that |{:(a+b, 2a+b, 3a+b),(2a+b, 3a+b, 4a+b), (4a+b, 5a+b, 6a+b):}|=0.

The determinant |{:(a+b+c,a+b,a),(4a+3b+2c,3a+2b,2a),(10a+6b+3c,6a+3b,3a):}| is independent of which one of the following ?

Without expanding,show that the value of each of the determinants is zero: det[[a+b,2a+b,3a+b2a+b,3a+b,4a+b4a+b,5a+b,6a+b]]

Prove that |[a+b,a+2b,a+3b] , [a+3b,a+4b,a+5b] , [a+5b,a+6b,a+7b]|=0

If a=i,b=omega and C=omega^(2), then the value of determinant det[[a,a+b,a+b+c3a,4a+3b,5a+4b+3c6a,9a+6b,11a+9a+6c]]

The value of the product (4a^(2)+3b)(9b^(2)+4a) at a=1, b=-2 is

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

The three points [(a+b)(a+2b),(a+b)],[(a+2b)(a+3b),(a+2b)] and [(a+3b)(a+4b),(a+3 b)]

Suppose a,b,c epsilon R and Delta=|(a,a+b,a+b+c),(3a,4a+3b,5a+4b+3c),(6a,9a+6b,11a+9b+6c)| If Delta=11.728 then a=______

Find the value of the products: (4a^(2)+3b)(4a^(2)+3b)ata=1,b=2