Home
Class 12
MATHS
Let a,b,c be such that b(a+c) ne 0 . If ...

Let a,b,c be such that `b(a+c) ne 0` . If
`|(a,a+1,a-1),(-b,b+1,b-1),(c,c-1,c+1)|+|(a+1,b+1,c+1),(a-1,b-1,c+1),((-1)^(n+2)a,(-1)^(n+1)b,(-1)^nc)|=0`
then the value of n is

A

Zero

B

Any even integer

C

Any odd integer

D

Any integer

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b and c be such that (b+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c,c-1,c+1)|+|(a+1,b+1,c-1),(a-1, b-1,c+1),((-1)^(n+2)a , (-1)^(n+1)b,(-1)^n c)|=0 , then the value of 'n' is :

Let a, b, c be such that b(a""+""c)!=0 . If |a a+1a-1-bb+1b-1cc-1c+1|+|a+1b+1c-1a-1b-1c+1(-1)^(n+2)a(-1)^(n+1)b(-1)^n c|=0 then the value of n is (1) zero (2) any even integer (3) any odd integer (4) any integer

Prove: |(1,a, b c),(1,b ,c a),(1,c ,a b)|=|(1,a ,a^2),( 1,b,b^2),( 1,c,c^2)|