Home
Class 12
MATHS
If a gt 0 and discriminant of ax^(2) + 2...

If `a gt 0` and discriminant of `ax^(2) + 2bx + c` is negative, then
`Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)|`, is

A

Positive

B

`(ac-b^(2))(ax^(2)+2bx+c)`

C

Negative

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a>0 and discriminant of ax^(2)+2bx+c is negative,then det[[a,b,ax+bb,c,bx+c]],+ve b.(ac-b)^(2)(ax^(2)+2bx+c) c.-ve d.0

The non-zero roots of the equation Delta =|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,c)|=0 are

The non-zero roots of the equation Delta=|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,c)|=0 are

If b^2 -aclt0 and alt 0, then thevalue of the determinant |(a,b,ax+by),(b,c,bx+cy),(ax + by,bx + cy,0)| is

If both the roots of ax^(2)+bx+c=0 are negative and b<0 then :

If c gt0 and 4a+clt2b then ax^(2)-bx+c=0 has a root in the interval

If a + b + c = 0 then the quadratic equation 3ax^(2) + 2bx + c = 0 has

The equation ax^2+ bx + c=0, if one root is negative of the other, then: (A) a =0 (B) b = 0 (C) c = 0 (D) a = c

Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x^2+2b x y+c y^2) .