Home
Class 12
MATHS
If the number of distinct real roots of ...

If the number of distinct real roots of
`|(sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx)|=0` in the interval `-pi/4 le x le pi/4` is

A

0

B

2

C

1

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (a) 0 (b) 2 (c) 1 (d) 3

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le (pi)/4 is

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2

The number of distinct real roots of |[sinx,cosx,cosx],[cosx,sinx,cosx],[cosx,cosx,sinx]|=0 in the interval pi//4lt=xlt=pi//4 is 0 b. 2 c. 1 d. 3

If -pi/4lexlepi/4 then abs((sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx))=0 then find the number of solution

y=(sinx)^(cosx)+(cosx)^(sinx)

|[cosx,-sinx],[sinx,cosx]|

If |[cosx, sinx, cosx], [-sinx, cosx, sinx], [-cosx, -sinx, cosx]|=0 , then x=