Home
Class 12
MATHS
Let omega = - (1)/(2) + i (sqrt3)/(2), t...

Let `omega = - (1)/(2) + i (sqrt3)/(2)`, then the value of the determinant `|(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))|`, is

A

`3omega`

B

`3omega(omega-1)`

C

`3omega^(2)`

D

`3omega(1-omega)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

(1-omega+omega^(2))(1+omega-omega^(2))=4

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

The value of det[[1,1,11,omega,omega^(2)1,omega^(2),omega]]

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.