Home
Class 12
MATHS
If A=[(a,b),(b,a)] and A^(2)=[(alpha, be...

If `A=[(a,b),(b,a)]` and `A^(2)=[(alpha, beta),(beta, alpha)]`then `(alpha, beta)` is

A

`alpha=a^(2)+b^(2),beta=ab`

B

`alpha=a^(2)+b^(2),beta=2ab`

C

`alpha=a^(2)+b^(2),beta=a^(2)-b^(2)`

D

`alpha=2ab,beta=a^(2)=b^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(a,b),(b,a)] and A^2=[(alpha, beta),(beta, alpha)] then (A) alpha=a^2+b^2, beta=ab (B) alpha=a^2+b^2, beta=2ab (C) alpha=a^2+b^2, beta=a^2-b^2 (D) alpha=2ab, beta=a^2+b^2

csc^(2)(alpha+beta)-sin^(2)(beta-alpha)+sin^(2)(2 alpha-beta)=cos^(2)(alpha-beta) where alpha,beta in(0,(pi)/(2)), then sin(alpha-beta) is equals

2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If tan(alpha-beta)=(sin2 beta)/(3-cos2 beta) then (a) tan alpha=2tan beta(b)tan beta=2tan alpha(c)2tan alpha=3tan beta(d)3tan alpha=2tan beta

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

tan alpha and tan beta are roots of the equation x^(2)+ax+b=0, then the value of sin^(2)(alpha+beta)+a sin(alpha+beta)*cos(alpha+beta)+b cos^(2)(alpha+beta) is equal to

If alpha and beta are roots of ax^(2) + bx + c = 0 , then find the value of a((alpha^(2) + beta^(2))/(beta alpha)) + b((alpha)/(beta) + (beta)/(alpha))

If alpha,beta are roots of the equation x^(2)+2x+5=0 and bar(a)=(alpha+beta)bar(i)+alpha betabar(j),beta b=alpha betabar(i)+(alpha+beta)bar(j)+(alpha^(2)+beta^(2))bar(k) then bar(a)xxbar(b)=