Home
Class 12
MATHS
Let M and N be two even order non sing...

Let M and N be two even order non singular skew symmetric matrices than MN=NM. If `P^(T)` denotes the transpose of P, then `M^(2)N^(2)(M^(T)N)^(-1)(MN^(-1))^(T)` is equal to

A

`M^(2)`

B

`-N^(2)`

C

`-M^(2)`

D

MN

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let MandN be two 3xx3 non singular skew- symmetric matrices such that MN=NM* If P^(T) denote the transpose of P, then M^(2)N^(2)(M^(T)N)^(-1)(MN^(-1))^(T) is equal to M^(2) b.-N^(2) c.-M^(2) d.MN

Let A and B be two 2times2 non singular skew symmetric matrices such thatAB=BA. If P^(T) ,denotes transpose of P then (B^(2)A^(2))^(2)((B^(T)A)^(-1))^(2)((BA^(-1))^(T))^(2) is equal to

If A=[[2,3],[4,5]] , prove that A-A^T is skew symmetric matrix, where A^T denotes the transpose of A.

If A=[[3,4],[5,1]] , show that A-A^T is a skew symmetric matrix, where A^T denotes the transpose of matrix A

Let A be a non - singular symmetric matrix of order 3. If A^(T)=A^(2)-I , then (A-I)^(-1) is equal to

If A a non singular matrix an A^T denotes the transpose of A then (A) |A A^T|!=|A^2| (B) |A^T A|!=|A^T|^2 (C) |A|+|A^T|!=0 (D) |A|!=|A^T|

Let P be a non - singular matrix such that I+P+P^(2)+…….P^(n)=O (where O denotes the null matrix), then P^(-1) is

If A=[[3m,-4],[1,-1]] , show that (A-A^T) is skew symmetric matrix, where A^T is the transpose of matrix A.

Let M and N are two non singular matrices of order 3 with real entries such that (adjM)=2N and (adjN)=M . If MN=lambdaI , then the value the values of lambda is equal to (where, (adj X) represents the adjoint matrix of matrix X and I represents an identity matrix)