Home
Class 12
MATHS
A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),...

`A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)]A^(-1)=(1)/(6)[A^(2)+cA+dI]` where `c, d inR`, then pair of values (c, d)

A

`(6,11)`

B

`(6,-11)`

C

`(-6,11)`

D

`(-6,-11)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),(0,1,0),(0,0,1)],A^-1=1/6[A^2+cA+dI], where c,d in R, then pair of values (c,d)

A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)] then , the value of c and d are

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (=6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

If A = [(1,0,0), (0,1,1), (0, -2,4)], 6A ^ -1 = A ^ 2 + cA + dI, then (c, d) =

If A=[[1,0,0],[0,1,1],[0,-2,4]] and 6A^(-1)=A^2+cA+dI . Then c+d is

If A=[[1, 0, 0], [0, 1, 1], [0, -2, 4]] and A^(-1)=(1)/(6)(A^(2)+cA+dI) , where c, din R and I is an identity matrix of order 3, then (c, d)=

if [{:(1,2,a),(0,1,4),(0,0,1):}]=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

If A=[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)] then (A) A^2=I (B) A^2=0 (C) A^3=0 (D) none of these