Home
Class 12
MATHS
Let m and M be respectively the minimum...

Let m and M be respectively the minimum and maximum values of `|{:(cos^(2) x , 1+sin^(2) x , sin 2x),(1+cos^(2)x, sin^(2)x, sin 2x),(cos^(2) x , sin^(2)x, 1+ sin2x):}|`
Then the ordered pari ( m , M) is equal to :

A

`(-3,3)`

B

`(-3,-1)`

C

`(-4,-1)`

D

`(1,3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum and maximum values of sin2x-cos2x

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

If maximum and minimum values of the determinant |{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}| are alpha and beta then

The maximum value of f(x)=|(sin^(2)x,1+cos^(2)x,cos2x),(1+sin^(2)x,cos^(2)x,cos2x),(sin^(2)x,cos^(2)x,sin2x)|,x inR is :

(cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If m and M are the minimum and the maximum values of 4+(1)/(2)sin^(2)2x-2cos^(4)x,x in R then

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

If the maximum and minimum values of the determinant |(1+sin^(2)x,cos^(2)x,sin2x),(sin^(2)x,1+cos^(2)x,sin2x),(sin^(2)x,cos^(2)x,1+sin2x)| are alpha and beta respectively, then alpha+2beta is equal to