Home
Class 12
MATHS
If alpha + beta + gamma = 2pi, then the ...

If `alpha + beta + gamma = 2pi`, then the system of equations
`x + (cos gamma)y + (cos beta)z = 0`
`(cos gamma) x + y + (cos alpha)z = 0`
`(cos beta )x + (cos alpha)y + z = 0`
has :

A

Infinitely many solutions

B

A unique solution

C

No solution

D

Exactly two solutions

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha + beta + gamma = 2 theta , prove that cos theta + cos(theta- alpha) + cos(theta- beta) + cos(theta -gamma) = 4(cos (alpha/2) cos (beta/2) cos (gamma/2))

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

If cos alpha+cos beta+cos gamma=0; then prove that cos3 alpha+cos3 beta+cos3 gamma=12cos alpha cos beta cos gamma

If cos alpha+cos beta+cos gamma=0, then prove that cos3 alpha+cos3 beta+cos3 gamma=12cos alpha cos beta cos gamma

lfsin alpha + sin beta + sin gamma = 0 = cos alpha + cos beta + cos gamma then sum cos (alpha-beta) =

Let cos(alpha-beta) + cos(beta - gamma) + cos(gamma - alpha)= -3/2 , then the value of cos alpha + cos beta + cos gamma is