Home
Class 12
MATHS
If cosalpha,cosbeta,cosgamma are the dir...

If `cosalpha,cosbeta,cosgamma` are the direction cosines of a vector `veca`, then `cos2alpha+cos2beta+cos2gamma` is equal to

A

2

B

3

C

`-1`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: If cos alpha,cos beta, and cos gamma are the direction cosines of any line segment,then cos^(2)alpha+cos^(2)beta+cos^(2)gamma=1. Statement 2: If cos alpha,cos beta,and cos gamma are the direction cosines of any line segment,then cos2 alpha+cos2 beta+cos2 gamma=1

If alpha,beta ,gamma are direction angles of a line , then cos 2alpha + cos 2beta + cos 2 gamma =

cos^(2) alpha +cos^(2) beta +cos^(2) gamma is equal to

If cosalpha, cosbeta, cosgamma be the direction cosines of a line, prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=2 .

If (l,m,n) are the direction cosines of a line then cos^(2)alpha+cos^(2)beta+cos^(2)gamma=

If cosalpha, cosbeta and cosgamma are the direction cosine of a line, then find the value of cos^2alpha+(cosbeta+singamma)(cosbeta-singamma) .

If cos alpha,cos beta,cos gamma are the direction cosine of a line,then find the value of cos^(2)alpha+(cos beta+sin gamma)(cos beta-sin^(2)gamma

If alpha,beta, gamma are the direction angles of a vector and cos alpha=(14)/(15), cos beta=(1)/(3) , then cos gamma=

If cos alpha, cos beta, cos gamma are the direction cosines of a line then the value of sin^(2) alpha + sin^(2) beta + sin^(2) gamma is__________

" If "(l,m,n)" are directional cosines of a line,then "cos^(2)alpha+cos^(2)beta+cos^(2)gamma=