Home
Class 12
MATHS
The plane x + 3y + 13 = 0 passes through...

The plane x + 3y + 13 = 0 passes through the line of intersection of the planes `2x - 8y + 4z = p` and `3x - 5y + 4z + 10 = 0 ` If the plane is perpendicular to the plane , `3x - y - 2z - 4 = 0 `then the value of p is equal to

A

2

B

5

C

9

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Plane passing through the intersection of the planes x + 2y + z - 1 = 0 and 2x + y + 3z - 2 = 0 and perpendicular to the plane x + y + z - 1 = 0 and x + ky + 3z - 1 = 0. Then the value of k is

Plane passing through the intersection of the planes x + 2y + z- 1 = 0 and 2x + y + 3z - 2 = 0 and perpendicular to the plane x + y + z - 1 = 0 and x + ky + 3z - 1 = 0. Then the value of k is

Plane passing through the intersection of the planes x + 2y + 2-1 = 0 and 2x + y + 3z - 2 = 0 and perpendicular to the plane x + y + z-1= 0 and x + ky + 3z - 1 = 0. Then the value of k is

The equation of the plane passing through the line of intersection of the planes x + y + 2z = 1,2x + 3y + 4z = 7, and perpendicular to the plane x - 5y + 3z = 5 is given by:

Find the equation of the plane passing through the line of intersection of the planes 2x-y=0 and 3z-y=0 , and perpendicular to the plane 4x+5y-3z=9 .