Home
Class 12
MATHS
If the straight lines x=1+s,y=-3-lambda ...

If the straight lines `x=1+s,y=-3-lambda s,z=1+lambdas` and `x=(1)/(2),y=1+t,z=2-t` ,with parameters s and t respectively,are co-planar then lambda .Equals

A

0

B

`-1`

C

`-1//2`

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight lines x=-1+s,y=3-lambda s,z=1+lambda s and x=(t)/(2),y=1+t,z=2-t with paramerters s and t, respectivley,are coplanar,then find lambda

If the straighat lines x=1+s,y=-3-lamdas,z=1+lamdas and x=t/2,y=1+t,z=2-t with parameters s and t respectively, are coplanar, then lamda equals (A) -1/2 (B) -1 (C) -2 (D) 0

If the lines x = 1 + s, y = - 3 - lamda s , z = 1 + lamda s and x = ( t ) / ( s ) , y = 1 + t , z = 2 - t are coplanar, then lamda is equal to

If the shortest distance between the straight lines 3(x-1) = 6(y-2) = 2(z-1) and 4(x-2) = 2(y-lambda) = (z-3), lambda in R is (1)/(sqrt(38)) , then the integral value of lambda is equal to :

the lines (x+3)/(2)=(y)/(1)=(z-4)/(3) and (x)/(lambda)=(y-1)/(lambda+1)=(z)/(lambda+2) are perpendicular to each other.then lambda is equal to

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

The distance between the lines x=1-4t, y=2+t, z=3+2t" and "x=1+s, y=4-2s, z=-1+s is