Home
Class 12
MATHS
If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(...

If the lines `(x-2)/(1)=(y-3)/(1)=(z-4)/(-k)` and `(x-1)/(k)=(y-4)/(2)=(z-5)/(1)` are coplanar, then k can have

A

Exactly three values

B

Any value

C

Exactly one value

D

Exactly two values

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

If the lines (x-2)/(1)=(y-3)/(1)=(x-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar,then k can have

the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(1)=(z-5)/(1) are coplanar if k=?

If the lines (x-2)/(1)=(y-3)/(1)=(x-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(x-5)/(1) are coplanar,then k can have (1) exactly one value (2) exactly two values (3) exactly three values (4) any value

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar if a.k=1 or -1 b.k=0 or -3ck=3 or -3d.k=0 or -1

If the lines (x-2)/1 = (y-3)/1 = (z-4)/-p and (x-1)/p = (y-4)/2 = (z-5)/1 are coplanar, then: p=