Home
Class 12
MATHS
In a triangle ABC, if |vec(BC)|=8, |vec(...

In a triangle ABC, if `|vec(BC)|=8, |vec(CA)|=7, |vec(AB)|=10`, then the projection of the `vec(AB)` on `vec(AC)` is equal to :

A

`(25)/(4)`

B

`(115)/(16)`

C

`(127)/(20)`

D

`(85)/(14)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC if vecabs(AB)=7 ,vecabs(BC)=5 ,and vecabs(CA)=3. . If the projection of vec(BC) on vec(CA) is n/2 , then the value of n is

If |vec(a)|=7, |vec(b)|=11 and |vec(a)+vec(b)|=10 sqrt(3) , then |vec(a)-vec(b)| is equal to

Given a parallelogram ABCD. If |vec AB|=a,|vec AD|=b&|vec AC|=c, then vec DB*vec AB has the value

A, B, C, D are four points in the space and satisfy |vec(AB)|=3, |vec(BC)|=7, |vec(CD)|=11 and |vec(DA)|=9 . Then find the value of vec(AC)*vec(BD) .

In the isosceles triangle ABC,|vec AB|=|vec BC|=8, a point E divide AB internally in the ratio 1:3, then the cosine of the angle between vec CE and vec CA is (where |vec CA|=12 )

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is