Home
Class 12
MATHS
cot^(-1)[(cos alpha)^(1//2)]-tan^(-1)[(c...

`cot^(-1)[(cos alpha)^(1//2)]-tan^(-1)[(cos alpha)^(1//2)]=x` then `sin x`=

A

`tan^(2)((alpha)/(2))`

B

`cot^(2)((alpha)/(2))`

C

`tanalpha`

D

`cot((alpha)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

cot^-1[(cot alpha)^(1/2)]+tan^-1[(cotalpha)^(1/2)]=x then sin x= (A) 1 (B) cot^2(alpha/2) (C) tanalpha (D) cot(alpha/2)

if cot^(-1)[sqrt(cos alpha)]-tan^(-1)[sqrt(cos alpha)]=x then sin x is equal to

cot_(sin x)^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then

If cot^(-1)(sqrt(cos alpha))-tan^(-1)(sqrt(cos alpha))=x then sin x is tan^(2)(alpha)/(2)(b)cot^(2)(alpha)/(2)(c)tan^(2)alpha(d)cot(alpha)/(2)

If cos^(-1)sqrt(cos alpha)-sin^(-1)sqrt(cos alpha)=x, then the value of sin x is

If alpha in(-(3 pi)/(2),-pi), then the value of tan^(-1)(cot alpha)-cot^(-1)(tan alpha)+sin^(-1)(sin alpha)+cos^(-1)(cot alpha) is equal to (a)2 pi+alpha(b)pi+alpha(c)0(d)pi-alpha

If cot^(-1)(sqrt(cos1))-tan^(-1)(sqrt(cos1))=alpha then the value of sin alpha is -