Home
Class 12
MATHS
If sin^-1 x=theta+beta and sin^-1 y= th...

If `sin^-1 x=theta+beta and sin^-1 y= theta-beta,` then `1+xy=`

A

`"sin"^(2)theta+"sin"^(2)beta`

B

`"sin"^(2)theta+cos^(2)beta`

C

`cos^(2)theta+cos^(2)beta`

D

`cos^(2)theta+"sin"^(2)beta`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x=theta+beta andsin ^(-1)y=theta-beta, then 1+xy is equal to sin^(2)theta+sin^(2)beta(b)sin^(2)theta+cos^(2)beta cos^(2)theta+cos^(2)theta(d)cos^(2)theta+sin^(2)beta

If sin^(-1)x= theta +phi and sin^(-1)y = theta - phi , then: 1+xy =

If: sin^(-1)x = alpha + beta and sin^(-1)y = alpha - beta , then: 1+xy =

If cos (theta -alpha) =a, sin (theta - beta) =b, then cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) is equal to

If y=log(1+ theta), x= sin^(-1) theta , then (dy)/(dx) =

If (alpha,beta) is a point of intersection of the lines x cos theta+y sin theta=3 and x sin theta-y cos theta=4 where theta is parameter,then maximum value of 2(a+beta)/(sqrt(2)) is