Home
Class 12
MATHS
If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2, ...

If `tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2`, then: x=

A

`sqrt(b/a)`

B

`sqrt(a/b)`

C

`-sqrt(ab)`

D

`sqrt(ab)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 then x=?

Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab) Statement 2: If m,n epsilonN,ngem, then "tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4 .

If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) then x^(4)-x^(2)(Sigma ab)+abcd=

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).