Home
Class 12
MATHS
sin^(-1)" 1/sqrt5 +cot^(-1)3 is equal to...

`sin^(-1)" 1/sqrt5 +cot^(-1)3` is equal to

A

`pi//6`

B

`pi//4`

C

`pi//3`

D

`pi//2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt(3)-cot^(-1)(-sqrt(3)) is equal to (A) (B) (B) (C) 0(D)

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

sin^(-1)(1/sqrt5)+cos^(-1)(3/sqrt(10))

If sin^(-1)(1/sqrt(5)) and cos^(-1)(3/sqrt(10)) are angles in [0,(pi)/(2)] , then their sum is equal to

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))