Home
Class 12
MATHS
If tan^(-1)x+tan^(-1)y=pi/4, then write ...

If `tan^(-1)x+tan^(-1)y=pi/4,` then write the value of `x+y+x ydot`

A

x+y+xy=1

B

x+y-xy=1

C

x+y+xy+1=0

D

x+y-xy+1=0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y=(pi)/(4), then write the value of x+y+xy.

If tan^(-1)x+tan^(-1)y=(pi)/(4) , and the value of xy<1 ,then show that x+y+xy=1 .

If x, y, z in R are such that they satisfy x + y + z = 1 and tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) , then the value of |x^(3)+y^(3)+z^(3)-3| is

If tan^(-1) x +tan^(-1) y = pi/4 , xy lt 1 , then prove that x+y+xy=1 .

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to

If tan(x+y) tan(x-y)=1 , then the value of tan((2x)/3) is:

(v) Let x,y in R satisfying the equation tan^(-1)x+tan^(-1)y+tan^(-1)(xy)=(11 pi)/(12) ,then find the value of (dy)/(dx) at x=1 .

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."