Home
Class 12
MATHS
If tan^(-1) x + tan^(-1)y + tan^(-1)=pi ...

If `tan^(-1) x + tan^(-1)y + tan^(-1)=pi then x + y + z` is equal to

A

xyz

B

0

C

1

D

2xyz

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

tan^(-1)x+tan^(-1)y is equal to

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

Statement I If tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 , then arithmetic mean of odd powers of x, y, z is equal to 1/3 . Statement II For any x, y, z we have xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1)

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to