Home
Class 12
MATHS
If sec^(-1)x=cosec^(-1) y then cos^(-1)(...

If `sec^(-1)x=cosec^(-1) y` then `cos^(-1)(1)/(x)+cos^(-1)(1)/(y)`=

A

`pi`

B

`pi/4`

C

`(-pi)/(2)`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec^(-1)x=cos ec^(-1)y, then cos^(-1)((1)/(x))=cos^(-1)((1)/(y))=

If sin^(-1)x +sin^(-1)y =pi then cos^(-1)x +cos^(-1)y is :

If sec^(-1)x=csc^(-1)y, then find the value of cos^(-1)(1)/(x)+cos^(-1)(1)/(y)

sin(sec^(-1)x+"cosec"^(-1)x)

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

If sin^(-1)x + sin^(-1)y =(2pi)/3 , then: cos^(-1)x +cos^(-1)y=

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1) . 1/x + cos ^(-1) . 1/y .

"cosec"(sin^(-1)x+cos^(-1)x)

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then