Home
Class 12
MATHS
if a>b>0 then the value of tan^(-1)(a/b)...

if a>b>0 then the value of `tan^(-1)(a/b) + tan^(-1)((a+b)/(a-b))` is

A

Both a and b

B

b and not a

C

a and not b

D

Neither a nor b

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of tan^(-1)a/b-tan^(-1)((a-b)/(a+b))

If a > b > 0,than the value of tan^(-1) (a/b) + tan^(-1) ((a+b)/(a - b)) depends on

The value of sec[tan^(-1)((b+a)/(b-a))-tan^(-1)((a)/(b))] is

tan^(-1)((a)/(b))-tan((a-b)/(a+b))=(pi)/(4)

If a ,\ b ,\ c >0 such that a+b+c=a b c , find the value of tan^(-1)a+tan^(-1)b+tan^(-1)c .

tan^(-1)((a+b tan x)/(b-a tan x))

tan^(-1) [(a+b tan x)/(b-a tan x)]

tan^(-1)( (a+b tan c)/ (b-a tan x) )

If A=tan^(-1)(1/7) and B=tan^(-1)(1/3) then A+B=