Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2...

If `sin^(-1)x+sin^(-1)y+sin^(-1)z=(pi)/(2)`, then the value of `x^(2)+y^(2)+z^(2)+2xyz` is equal to

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

Q.if sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), then

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If x,y,z in[-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

If sin ^(-1) x + sin ^(-1) y + sin ^(-1) z = (3pi)/(2) then the value of x ^(100) + y ^(100) + z ^(100) - (3)/( x ^(101) + y^(101) + z ^(101)) is

If sin^(-1)x+sin^(-1)y+sin^(-1)z=3 pi/2 then the value of 3000(x+y+z)-(816)/(x^(2)+y^(2)+z^(2)) is equal to 8730-alpha where alpha=

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to