Home
Class 12
MATHS
If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x...

If `tan^(-1)x+2cot^(-1)x=(2pi)/(3)` then x =

A

`sqrt2`

B

`3`

C

`sqrt3`

D

`(sqrt3-1)/(sqrt3+1)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+2cot^(-1)x=(2 pi)/(3), then x, is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3)(d)sqrt(2)

3tan^(-1)x+cot^(-1)x=pi

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

Solve: tan^(-1)x+2cot^(-1)x=(2pi)/3

If tan^(-1)x+2cot^(-1)x=(5pi)/6 , then find x.

If tan^(-1)x+sin^(-1)x=-(2 pi)/(3) then the value of cos^(-1)x+cot^(-1)x is equal to

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1) x +cot^(-1)x =(pi)/(2) holds, when

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to