Home
Class 12
MATHS
If cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, th...

If `cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi`, then xy+yz+zx is equal to:

A

0

B

1

C

3

D

`-3`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3 pi, then xy+yz+zx is equal to

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then

If : cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, " then :" x (y+z)+y(z+x)+z(x+y)=

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If x,y,z in[-1,1] such that cos^(-1)x+cos^(1)y+cos^(-1)z=3 pi, then find the values of (1)xy+yz+zy and (2)x(y+z)+y(z+x)+z(x+y)

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi ,then the value of x^(2012),+y^(2012)+z^(2012)+(6)/(x^(2011)+y^(2011)+z^(2011)) is equal to: