Home
Class 12
MATHS
The equation 2 cos^(-1)x=sin^(-1)(2x sqr...

The equation `2 cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2)))` is valid for all values of x satisfying

A

`0 le x le (1)/(sqrt2)`

B

`-1 le x le 1`

C

`0 le x le 1`

D

`(1)/(sqrt2) le x le 1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation 2cos^(-1)x=cos^(-1)(2x^(2)-1) is satisfied by

The equation 2^(1+cos2x)*sin^(2)x+2sin^(2)2x+2cos2x=2 is satisfied for -

cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

If a,b are real and a^(2)+b^(2)=1, then show that the equation (sqrt(1+x)-i sqrt(1-x))/(sqrt(1+x)+i sqrt(1-x))=a-ib is satisfied y a real value of x.

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is

The equation 3^("sin"2x + 2"cos"^(2)x) + 3^(1-"sin"2x +2"sin"^(2)x) = 28 is satisfied for the values of x given by

The values of x satisfying the equation 2tan^(-1)(3x)=sin^(-1)((6x)/(1+9x^(2))) is equal to