Home
Class 12
MATHS
If x1,x2, x3, x4 are the roots of the eq...

If `x_1,x_2, x_3, x_4` are the roots of the equation `x^4-x^3 sin2 beta+ x^2.cos2 beta-xcos beta-sin beta=0`, then `tan^-1x_1+tan^-1x_2+tan^-1x_3+tan^-1x_4` is equal to

A

`beta`

B

`(pi)/(2)-beta`

C

`pi-beta`

D

`-beta`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(1),x_(2),x_(3),x_(4) are the roots of the equation x^(4)-x^(3)sin2 beta+x^(2)*cos2 beta-x cos beta-sin beta=0, then tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)+tan^(-1)x_(4) is equal to

If x_(1),x_(2),x_(3),andx_(4) are the roots of the equations x^(4)-x^(3)sin2 beta+x^(2)cos2 beta-x cos beta-sin beta=0, prove that tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)+tan^(-1)x_(4)=n pi+((pi)/(2))-beta, where n is an integer.

If tan theta_(1),tan theta_(2),tan theta_(3),tan theta_(4) are the roots of the equation x^(4)-x^(3)sin2 beta+x^(2)cos2 beta-x cos beta-sin beta=0 then prove that tan(theta_(1)+theta_(2)+theta_(3)+theta_(4))=cot beta