Home
Class 12
MATHS
If a(1),a(2),a(3),….a(n) is a.p with com...

If `a_(1),a_(2),a_(3),….a_(n)` is a.p with common difference d then
`tan{tan^(-1)(d)/((1+a_(1)a_(2))+tan^(-1)(d)/(1+a_(2)a_(3) +..+ tan^(-1)(1)/(1+a_(n-1)a_(n))}` is equal to

A

`((n-1)d)/(a_(1)+a_(n))`

B

`((n-1)d)/(1+a_(1)a_(n))`

C

`(nd)/(1+a_(1)a_(n))`

D

`(a_(n)-a_(1))/(a_(n)+a_(1))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),….a_(n) is a.p with common difference d then tan{tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3))) +..+ tan^(-1)((d)/(1+a_(n-1)a_(n)))} is equal to

If a_(1),a_(2),a_(3),a_(n) is an A.P.with common difference d, then prove that tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+tan^(-1)((d)/(1+a_(n-1)a_(n)))]=((n-1)d)/(1+a_(1)a_(n))

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_(1), a_(2), a_(3) are in arithmetic progression and d is the common diference, then tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))=

If a_(1),a_(2),a_(3),...a_(n) are in arithmetic progression with common difference d, then evaluate the following expression: tan{tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a^(2)a_(3)))+tan^(-1)((d)/(1+a_(3)a_(4)))+...+tan^(-1)((d)/(1+a_(n-1)a_(n)))}

If a_(1),a_(2),a_(3),...,a_(2n+1) are in A.P.then (a_(2n+1)-a_(1))/(a_(2n+1)+a_(1))+(a_(2n)-a_(2))/(a_(2n)+a_(2))+...+(a_(n+2)-a_(n))/(a_(n+2)+a_(n)) is equal to (n(n+1))/(2)xx(a_(2)-a_(1))/(a_(n+1)) b.(n(n+1))/(2) c.(n+1)(a_(2)-a_(1)) d.none of these

If a_(0),a_(1),a_(3),a_(4)......... are in AP with common difference d where d!=0,1,-1, then the det[[a_(1)a_(2),a_(1),a_(0)a_(2)a_(3),a_(2),a_(1)a_(3)a_(4),a_(3),a_(2)]] is

If a_(1),a_(2),a_(3),,a_(n) are an A.P.of non-zero terms, prove that _(1)(1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))++(1)/(a_(n-1)a_(n))=(n-1)/(a_(1)a_(n))